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Abstract
In this paper, I present some existence theorems for quasi-variational

inequalities. Quasi-variational inequality is variational ineqality whose

constraint set depends upon unknown functions, that are solutions of

variational inequality. Parabolic quasi-variational inequality is repre-

sented by an evolution equation with subdifferentials.

1 Introduction

Differential equations are one of the most valu-
able theory to analyse various phenomena. In re-
cent, Nonlinear analysis is developing particularly,
and many brandnew informations are brought by
technics of analysis. Quasi-variational inequality is
also useful theory, and is studied by many mathe-
maticians.

Let X be a real reflexive Banach space and X*
be its dual. We assume that X and X* are strictly
convex and denote by < -,- > the duality pairing
between X* and X. Given a nonlinear operator A
from X into X*, an element ¢* € X* and a closed
convex subset K of X, the variational inequality is

formulated as a problem to find v in X such that

weK, <Au—g-u—w><0 "weK (1)

Variational inequality has been studied by many math-
ematicians, for instance see J. L. Lions and G. Stam-
pacchia [8], F. Browder [7], H. Brézis [5], and their
references.

The concept of quasi-variational inequality was
introduced by A. Bensoussan and J. L. Lions [1] in
order to solve some problems in the control theory.
Given an operator A : X — X*, an element g* € X*
and a family {K (v);v € X} of closed convex subsets
of X, the quasi-variational inequality is a problem to
find w in X such that

ue Ku), <Au—g*u—w><0 "we K(u) (2)

As is seen from (2), the constraint K (u) for the quasi-
variational inequality depends upon the unknown wu,
which causes one of main difficulties in the mathe-

matical treatment of quasi-variational inequalities.

2 Existence for elliptic

quasi-variational inequalities

Let X be a real Banach space and X* be its dual
space, and assume that X and X* are strictly convex.
We denote by < -,- > the duality pairing between
X* and X, and by |- |x and |- |x+ the norms of X
and X*, respectively. For various general concepts
on nonlinear multivalued operators from X into X*,
for instance, monotonicity and maximal monotonic-
ity of operators, we refer to the monograph [2]. In
this section, we mean that operators are multival-
ued, in general. Given a general nonlinear operator
A from X into X*, we use the notations D(A), R(A)
and G(A) to denote its domain, range and graph of
A. We formulate quasi-variational inequalities for
a class of nonlinear operators, which is called semi-

monotone, from X x X into X*.

2.1 Existence result

Definition 2.1. An operator A(-,-) : X x X — X*

is called semimonotone, if D(A) = X x X and the
following conditions (SM1) and (SM2) are satisfied:

(SM1) For any fixed v € X the mapping u —

A(v,u) is maximal monotone form D(A(v,-)) =
X into X*.

1) BeARt
1) Department of Mathematics



Existence theorems for abstract quasi-variational inequaties

(SM2) Let u be any element of X and {v,} be any
sequence in X such that v, — v weakly in
X. Then, for every u* € A(v,u) there exists
a sequence {u*} in X such that u* € A(v,,u)

and u;, — v* in X* as n — +00.

Let A: D(A) := X x X — X* be a semimono-
tone operator. Then we define A: D(A) =X — X*
by putting Au := A(u,u) for all v € X, which is
called the operator generated by A.

Now, for an operator A generated by semimono-
tone operator, any g* € X* and a mapping v — K (v)
we consider a quasi-variational inequality (3), to find
u € X and u* € X* such that

u € K(u), u* e Au,
{ <u*—gf,w—u><0, Ywe K(u).

(3)

Theorem 2.1. Let A: D(A) = X x X — X* be a
bounded semimonotone operator and A be the opera-
tor generated by A. Let Ko be a bounded, closed and
conver set in X . Suppose that to each v € Ky a non-
emptly, bounded, closed and convex subset K (v) of Ko
is assigned, and the mapping v — K(v) satisfies the
following continuity conditions (K1) and (K2) :

(K1) Ifv, € Ko, v, — v weakly in X (as n — 00),
then for each w € K(v) there is a sequence
wy, in X such that w, € K(v,) and w, — w

(strongly) in X .

(K2) Ifv, — v weakly in X, w, € K(vy,) and w, —
w weakly in X, then w € K (v).

Then, for any g* € X*, the quasi-variational inequal-

ity (3) has at least one solution u.

The following theorem is a slightly general version
of Theorem 2.1.

Theorem 2.2. Let A : D(A) = X x X — X*
be a bounded semimonotone operator and A be the
operator generated by A. Suppose that to each v €
X a non-empty, bounded, closed and convex subset
K(v) of X is assigned and there is a bounded, closed

and convez subset Go of X such that
K)NGy#0, YveX,

and
. <w,w—v >
inf ————— = 00 as |wjx - ©
w*€Aw |U}‘X

uniformly in v € Gy.
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Furthermore, the mapping v — K(v) satisfies the fol-
lowing condition (K’1) and the same condition (K2)

as in Theorem 2.1.:

(K’1) If v, — v weakly in X, then for each w €
K (v) there is a sequence w, in X such that

wy, € K(v,) and w,, — w in X.

Then, for any g* € X*, the quasi-variational inequal-

ity (3) has at least one solution u.

In our proof of Theorems 2.1 and 2.2, we use some
results on nonlinear operators of monotone type. For
detailed proof, see [11], and we show applications for

elliptic quasi-variational inequalities in [14].

3 Existence for parabolic quasi-

variational inequalities

For positive numbers §y, T, we are given sets
V(=bo,t), 0 <t < T,

of functions from (—dyp, t) into a real Hilbert space H
and a family {¢®(v;-)}o<s<¢ of proper, lower semi-
continuous, convex functions ¢*(v;-) with parame-
ters s € [0,¢] and v € V(—dy, t); here ¢*(v;-) contin-
uously depends upon v € V(—dg, t) in a certain non-
local way. We consider a nonlinear evolution equa-

tion of the form:
u' () + 0t (usu(t)) 3 f(t), 0<t<T, inH, (4)
subject to the initial condition
u(t) =up(t), —do<t<0, inH, (5)

where d¢’(u;-) is the subdifferential of convex func-
tion ¢*(u;-) on H, v’ = % and g : [~60,0] — H
and f:(0,7) — H are prescribed as the initial and
forcing functions, respectively. This is a sort of func-
tional differential equations generated by subdiffer-
entials of (!(v;-) with a nonlocal dependence upon
v. The objective of this section is to specify a class of
convex functions {¢®(v;-)}o<s<t as well as its non-
local dependence upon v € V(—dg,t) in order that
Cauchy problem {(4), (5)} admits at least one local
or global in time solution wu.

In general, for a given real Banach space X we
denote by |-|x the norm in X. Throughtout this sec-

tion, let H be a real Hilbert space with inner product
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(-,-)g and norm |- |g. Given a proper, lower semi-
continuous (l.s.c.) and convex function ¢(-) on H we

use the usual notation:

o D) = {= € Hyu(2) < oo}
(so called effective domain).

e 01 is the subdifferential of v, which is a
(multivalued) mapping in H and defined by

2" € (z) —
(v —2)g <) —Y(z), YweH

with domain
D(0) == {z € H;0(z) # D}(C D()).

There is an important concept of convergence for
convex functions, which was introduced by Mosco [6]
in order to characterize the convergence of solutions
to variational inequalities. Let {t,} be a sequence
of proper lLs.c. and convex functions on H. Then
it is said that v, converges to a proper, l.s.c. and
convex function ¢» on H in the sense of Mosco, if the
following two conditions (M1) and (M2) are fulfilled:

(M1) liminf 4, (z) > (=) for every z € H.
n—oo

(M2) For each z € D(%)) there is a sequence {z,} in
H such that z, — z in H and ¢, (z,) — ¥(2)

as n — oQ.

We refer various basic properties about convex func-

tions to monographs [3, 4, 10].

3.1 Local existence result

In order to formulate functions ¢! (v;-) precisely
we introduce a time-independent, non-negative, proper,
Ls.c. and convex function ¢o(-) on H such that the
set {z € H;|zlg < r, po(z) < r} is compact in H
for each » > 0.

Let ¢ be a fixed positive number and 7" > 0 be
a finite time. For each ¢ € [0,T] we define a closed
convex subset V(—dg,t) of Wh2(—8g,t; H) by

V(=do,t) == {v; V|_s5,,¢(v) < o0} (6)
with
V[—(So,t] (v)
= sup o(v(s)) + v(0)[F + |’U/|2L?(—6O,t;H)
—50§8St

(7)
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where v'(t) = dq;(tt).

Now, to each v € V(—0do, t) a family {¢®(v; ) bo<s<t

of functions ¢*(v;-) on H is assigned such that

(®1) ¢*(v; 2) is proper, L.s.c., non-negative and con-
vex in z € H, and it is determined by s €
[0,¢] and v on [—dp, s]; namely, for vy, vy €
V(—dp,t), we have ©*(vq,) = ¢*(ve,-) on H

whenever v; = vy on [—do, s;

(P2) p®(v;2) > wo(z), Yv € V(—do,t),
0<Vs<Vt<T;

(®3)If0 < s, <t <T, v, € V(=0p,1),
SUPneN ‘/[760’75] (U") < 00, Sp — S and Uy — U
in C([—do,t]; H), then ¢**(v,;-) — ¢*(v;-) on

H in the sense of Mosco.

We give the definition of solutions for evolution

equation (4).

Definition 3.1. Let uy € C([—dp,0]; H) and f €
L?(0,T; H). Then we say that u is a solution of the
following Cauchy problem CP(ug, f)

w'(t) + 0pt(usu(t)) > f(t), 0 <t <T,
U = ug on [750,0]

on [0,T7], if u satisfies that v € C([—do, T|; H), u =
up on [—08,0], u € WH2(5,T; H) for every (small)
§ >0, oV (usu(-)) € LY0,T) and f(t) — u'(t) €
0o (u;u(t)) for a.e. t € (0,7).

We introduce the following function spaces: given
any function ug in V(—dp,0), 0 < R < oo and ¢ €
[0,T7], we put

V(ug; —do,t) :== {v € V(—do, t);v = up on [, 0]},
and
VR(UQ; —50,t)(c V(UQ; —(50,t)) =

{o] sup, {iotoe) +10Ba0m } < 2}

Theorem 3.1. Let 0 < T < 0o and ug € V(—0o,0)

with ©°(ug; u(0)) < co. Assume that there are pos-

sup
0<s<t

itive numbers To < T and R > ¢°(uo; uo(0)), a fam-
ily {M,}o<r<oo Of positive numbers M, and a set
{{et(v;)};v € Vr(ug; —00,To)} of families

{p"(v; ) Yo<i<t, of convex functions satisfying the fol-

lowing condition (*):
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(*) There are two families
{a);v € Vr(uo; —d0,Tp),0 < r < oo}

of non-negative functions in L?(0,Ty) and {b%;v €
Vr(up; —00,70),0 < r < oo} of non-negative func-

tions in L*(0,Ty) such that
(H1) |a7|r2(0,m) < My and |b]|pio,m) < My for
all ¥ > 0 and all v € Vg(ug; —d0,Tp), and

{¢"(v;)} € G({ay}, {by}) for all
v € Vr(ug; —do, To);

(H2) for each finite 1 > 0 and ¢ > 0 there is a

positive number 6, > 0 such that

5’!‘5
/ (a2(r)? + B (r))dr <e,
0
Vv € Vr(uo; —do, To)-

Then, for each f € L?(0,To; H), problem CP(ug, f)
has at least one solution u on an interval [0,T’] with
0 < T <Ty such that u € V(—8y,T'; H)

and supg<;<ps @' (u;u(t)) < oo.

(Sketch of the proof.)
For fixed v € Vg(ug; —dp,Tp) we can get unique
solution u of
ug + O (vsu(t)) > f(t)
u(0) = up.

a.e. t e [O,To],

under our assumptions. With using fixed point the-
orem, we can see that there exists fixed point v = u.
This is a time local solution u of C'P(uy, f).

If you need detailed proof, see [12]. Tt should
be noticed that the family of proper, l.s.c., convex
functions G({a’}, {bl} is essential to solve (8). To
see the definition of this family, see [9].

3.2 Global existence result

Let g be the same as in the previous section as
well as dg > 0 and T > 0. In this section, we consider
a closed convex subset V(—dy,t) of L?(—y,t; H) for
each t € [0,T1, as is defined below, in place of V(—dy, t).

For each t € [0,T] we define

V(=00,t) := {v; Vi_5,.4(v) < 00}, (9)
where

t
Vo) (0) = [0 iy + / e(ul)ds. (10
—00
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Now, we suppose that to each v € V(—do, ) a family
{¢®(v; ) }o<s< of functions ¢®(v;-) on H is assigned
such that

(@1) ©*(v; 2) is proper, l.s.c., non-negative and con-
vex in z € H, and it is determined by s €
[0,¢] and v on [—dp, s]; namely, for vy, vy €

V(_607t>7 we have @s(vh ) = SDS(,UQa ) on H

whenever v; = vy a.e. on (—do, s);

(<i>2) P (v;2) > po(z), Yo € )}(—50,75),
vt <T;

0<Vs<

(B3 If0<s, <t<T, v, € V(=bo,t),
SUP,eN ‘7[_507,5](1)”) < 0, 8, = s and v, = v
in L2(_505t;H)7 then @S"(Um ) — gps(v; ) on

H in the sense of Mosco.

Next, we define a function space f)M(—éo,t) for
each M > 0 and ¢ € [0,T] by

Vi (=30, t) := {v € V(=do,1); f/[fzsm (v) < M}.

In order to show the existence of a solution of
CP(ug, f) on the whole interval [0,T] we relax as-
sumptions (H1) and (H2) as follows: For each M > 0
there is a family {M, }o<r<oo of positive numbers
M, and a set {{¢!(v;)};v € Var(—00,T)} of fami-
lies {¢"(v; -) bo<t<7 of convex functions satisfying the
following condition (**):

(**) There are two families
{a%;v € Var(—80,T),0 <7 < o0}

of non-negative functions in L?*(0,7) and {b%;v €
Var(=00,T),0 < 7 < 0o} of non-negative functions
in L1(0,T) such that
(H1) |a¥|p2(0,my < M, and [b2|11(0.7) < M, for all
7> 0and all v € Va(—dg, T), and {¢(v;-)} €
G({a2}, {b2}) for all v € Vi (—0o, T);

(H2) for each finite 7 > 0 and ¢ > 0 there is a

positive number §,. > 0 such that

t+0,e
[ @@ b <.
t
Vt € [0,T — 6,2], Yo € Var(—do, T).

It should be noted that these conditions are indepen-
dent of initial data. Moreover we require the follow-

ing assumption (H3):

10
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(H3) there are a positive number Ry and a family
{hy} := {hy;v € V(=00,T)} of functions in
Wh2(0,T; H) such that

|ho|w.20,7: ) < Ro,
T ~

/ (v ho(£))dt < R, Vo € V(—do, T).
0

We first show the existence of a solution C'P(ug, f)

on the whole interval [0, 7| for good initial values ug.

Theorem 3.2. Suppose that (H1) and (H2) hold
for every M > 0 as well as (H3). Let ug € V(—0y,0)
with % (ugp;up(0)) < oo and f be any function in
L?(0,T;H). Then CP(uq, f) has at least one solu-
tion u on [0,T) such that

ue WH2(0,T; H), sup o' (u;u(t)) < oo.

0<t<T

Before ending this section, I show the existence of
a solution of C'P(uy, f) for a little bit more general

class of initial data.

Theorem 3.3. Suppose that (®1), (®2) and ($3)
hold and that (H1) and (H2) hold for every M > 0
as well as (H3). Let ug € V(—8,0) N C([—dy,0]; H)
such that there is a sequence {ugn} in V(—6,0) with
09 (ugn; uon(0)) < oo satisfying that

sulgI ‘7[,50,0] (Uno) < 00, Uno = ug in C([—0g,0]; H).
ne

Then CP(ug, f) has at least one solution u on [0,T]
such that

we C(0,T); H), viu' € L2(0,T; H),

sup to'(usu(t)) < oc.
0<t<T

Theorem 3.2 and 3.3 are proved in [12].

4 Applications

In this section, we consider a nonlinear system
SP(ug, 0o; f) of the following form:

up — vAu+g(0,u) + 0lgpy(u) 20 inQ
E=E&0,u) in Q
0y — kA + h(0,u) = f in Q
ou

aTL_O’ =0 on X
U = ug, 9:90 in QO
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where  is a smooth bounded domain of RN, I' =
00, Q:=(0,T)xQ, X:=(0,T)xT, Qo :=[-1,0] x
2,0 < T < o0, () = %7 and 8—8” denotes the
outward normal derivative on I'; k and v are positive
constants and f is a function given on @Q; wy and 6y
are prescribed on © x [—1,0] as initial conditions;
g(+,+) is a vector field from R x R? into R?, u :=
(uM @) € R2 h(,-) is a function on R x R?
K(E) is a non-empty compact convex subset of R?
for each £ € R and Ol g is the subdifferential of
the indicator function I (g) of K(E) in R?; £ is an
operator from a function space (C L?(Q) x L?(Q)?)
into the space of smooth functions on Q.

For instance, in the biological context, consider
the coexistence or competition models of two species
of bacteria A and B. Now, let us pay attention to the
temperature field 6 as the most important parame-
ter which controls the power of activation of bacte-
ria A and B. Let u := (u®,u®) be the densities
(or the parameter indicating the activation) of bac-
teria A and B and that their dynamics are governed
by a reaction-diffusion equation. FE is described by
E = £(0,u) via a non-local smoothing operator &,

for instance, defined by

[£(0, u)](t, z)
= [1‘/§2P($_y7t_5759(svy)7u(37y))dyd87

V(t,x) € Q,

where p(-,-;-,-) is a smooth function on R x R x
R x R? with p(z,s;0,u) =0 if s > 1.

Now we put some assumptions for the system
SP(uo, Oo; f)-

(A1) g(-*) = (g1(+ ), g2(-,-)) is a globally bounded,
Lipschitz continuous vector field from R x R?
into R2.

(A2) h(:,-) is a globally bounded and Lipschitz con-

tinuous function from R x R? into R.

In order to mention precisely the assumptions
on K(FE) we need the space C*(R?,R?) of all C-
transformations from R? into itself, equipped with
the usual metric, and D! (R?) of all C!-diffeomorphi-
sms in R?, which is a subset of C!'(R? R?).

11



Existence theorems for abstract quasi-variational inequaties

(A3) K(-) is a set-valued mapping from R into R
such that K(F) is a non-empty, compact and
convex subset of R? for each E € R. Suppose
that

(al) Uger K(E) is bounded in R?,
and Nger K(E) # 0.

(a2) for each E € R there is Xg(-) € D'(R?)
such that Xg(K(0)) = K(E),

(a3) the mappings F — Xg(-) and
E — L Xp(-) are continuous from R into
C'(R2,R?).

(A4) €& is an operator from Dg which is defined by

t€[0,T]

into C1(Q), and enjoy the following conditions
(b1), (b2) and (b3):

(b1) For each § € L>°(—1,t; L*(Q)) and w €
L>(—1,t; L2(9)?) with t € [0,T] we put

E(s,x) := 5(9\[71,3]&\[—1&])(%)’
V(s,z) € [0,t] x Q

where 0)_; 4 and w1 4 are respectively
the restrictions of § and u on [—1, 5] x €.
Suppose that s — FE(s,-) is a Lipschitz
continuous function from [0, ¢] into C*(Q)
with £ E € L>°(0,¢; C*(Q)); hence

E(Sla ) - E(SQ’ )

_ ("4 Vo)
—/S dTE(T, )dr in C*(92),

2

Vs1, S9 € [0715].

(b2) Suppose that £ is continuous in the fol-
lowing sense: if {6,,} and {w,, } are bounded
in L>°(—1,¢; L3(Q)) and L>=(—1,t; L*(Q)?)
for each t € [0,T], respectively, and if
0, — 0 in L*(—-1,t; L*(Q)) and u,, — u
in L?(—1,t; L?(Q)?), then

En(5,7) 1= E(On|-1,5]> Un|[-1,5)) (@)
— E(s,1) := E(0)[—1,s), U|[-1,5])(T)

in - C([0,1];C'(Q))
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(b3) If # and w vary in bounded subsets of
L%°(—1,t; L?(2)) and
L>®(—1,t; L3(Q)?) for each t € [0,T], re-
spectively, then
E(s,x) = E(0)—1,5),u|[-1,5))(7) and its
derivative %E vary in bounded subsets of
C([0,t]; C*(Q2)) and L>(0,t;C(Q)), re-

spectively.

For some typical examples of K(FE) and £(0,u),
see [15] and [17].

Definition 4.1 Let f € L*(0,T;L3*(Q)), 6y €
C([~1,0; L*(Q)) and ug = (ul”,u{?) belongs to
C([-1,0]; L?>(2)?). Then a set of functions {0, u :=
(u™, u®)} is called a solution of SP(ug,fo; f) on
[0,T7], if the following conditions (s1)-(s4) are ful-
filled:

(s1) 0 ¢ C([—l,T];Lz(Q))
AW ((0, T); L2(Q)) N L2(0,T; H'(2))

loc

NL% .((—1,0]; H*(Q)), = 6y on [-1,0],
ue C([-1,T); L2(Q)?)
AW L2((0,T); L2(2)2) N L2(0, T; HY(Q)?)

loc

and u = ug on [—1,0].

(s2) Fora.e. t € (0,T), the following equation holds:
0'(t) — kApO(t) + h(8(t),u(t)) = f(t) in H,
where A p stands for the Laplacian with homo-

geneous Dirichlet boundary condition.

(s3) u(t,x) € K(E(t,x)) for a.e. (t,x) € Q, where
E(t,x) = 5(9|[_17t],u|[_17t])(:r) for (t,z) € Q.

(s4) For a.e. t € (0,T), the following quasi-

variational inequality holds:

/(u’(ty ) +9(0(t, ), u(t, ))) - (u(t, x) — 2(x))dz

€

2
. /Q Vult,z) - V(ult,z) — 2(x))de < 0,

Vz € HY(Q)? with z(x) € K(E(t,)) for a.e. x € Q,

Theorem 4.1  Suppose that assumptions (Al)-
(A4) are fulfilled. Let f € L?(0,T;L?*(Q)) and 6y €
C([~1,0]; L*(Q)) as well as ug = (uél),ugf)) be-
longs to C([—1,0]; L2(2)?). Suppose that there are
sequences {0o,} in C([—1,0]; H3 () and {up, :=
WS )Y in C(1=1,0); HY(Q)2) such that

eOn — 00 in C([—LO];L2(Q)),
Ugp — Up N O([_la 0]7 LQ(Q)Z)a

12
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uon(0,2) € K(E,(x)) for a.e. z € Q, Yn=1,2,---,

where E,,(x) = &(Oon, uon)(x) for all x € Q. Then,
SP(ug,bo; f) admits at least one solution {0,u :=
(u™, u®)} on [0,T] in the sense of Definition 4.1
such that

Vo' € L2(0,T; L* (), V6|72 € L=(0,T),
and
\/iul € L2(O,T; LQ(Q)Z), t|Vu|2L2(Q)2 S LOO(O,T),
where |Vul?, (@)2 = | Va2 T2(0) T |Vu(2)|2L2(Q).
For the detailed proof of this theorem, see [15].

We have to introduce a regularized problem for
SP(ug, 0o; f) to analyse SP(ug, 0o; f). For every pos-

itive constant e, we define a problem SP.(ug, 6o; f)

as:
uy — vAu+g(0,u) + 0l py(u) =0  inQ
E=¢&(0,u) in @
0y — kRAO+ h(0,u) = f in Q
%:0, =0 on ¥
U = Uug, 0200 inQO

where If(( B) is the Moreau-Yosida regularization of

I (), namely

1
Iy (u) = wE-KEE) ( w — u|2) Yu € R?,

and 01 f(( B) is the Yosida approximation of the sub-

differential Ol (g of I (g, namely

I-P
Ol = ———,

where Pg (g is the projection from R? onto K(E).

As was proved in section 6 of [15], SP.(uqg, 6o; f)
has a unique solution {f.,u. = (ugl),ug))} under
(A1)-(A4) with the following additional assumptions
(A5) and (A6).

(A5) |Pk(g,)(v) = Pr(z,)(v)] < Cp|E) — B,
VEi, Es € R,Yv € By, where By is a closed
ball around the origin in R? with Uger K (F) C

By and Cp is a positive constant.

(A6) The environment index E(x,t) := £(0)—1,¢)(x)

depends only on temperature 6 and is given by
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an integral operator of the form

E(O)—1,9)(x)
5;0(s,y))dyds,

= [ fyste st
Y(t,r) € Q,

where p(-,-;-) is smooth on R x R x R and
ply,s;r) =0if s > 1.

The next theorem ensures that all the solutions of
SP(ug, 0o; f) are approximated by regular problems
SP.(ug, bo; fc) of the above type, although problem
SP(ug, bp; f) has multiple solutions in general.

In the rest of this paper, in order to avoid some
irrelevant arguments we assume that the initial data
{60, u0} satisfy 0y € C([-1,0]; Hg(Q)),
ug € C([-1,0]; H1(Q)?) and vy € K(FEp) a
with

e. in Q)

0
= / / plx —y,—s,00(s,y))dyds, = €.
-1Ja

Theorem 4.2 Let {0,u} be any solution of problem
SP(ug, 0o; ), and let {e,,} be any sequence of positive
numbers with €, — 0 (asn — oo). Then there exists
a sequence {0,,un} of solutions of SP:, (ug,0o; frn)
such that 0,, — 6 in C([0,T); L*(Q)), weakly* in
L>(0,T; H} () and weakly in W12(0,T; L*(Q)) as
well as u, — u in C([0,T); L*(Q)?), and weakly* in
L*°(0,T; HH(Q)?) and weakly in WH2(0,T; L2(Q)?),
and fn, — f — 0 in L>(0,T; L*()).

For the detailed proof of Theorem 4.1 and 4.2,
see [15].

We proved existence theorems of optimal control
problem for SP(ug, fo; f) and its approximated prob-
lems in [16]. Moreover, we show existence of solu-
tions for several time-discrete problem of SP(ug, fo; f).
Results in [16] give us numerical scheme to get one of
the solutions of SP(ug, 6p; /) numerically. Analysing
time-discrete problem is very important from numer-
ical point of view.

If you need to see other examples, you can see
concrete application of quasi-variational inequality

n [13, 17].
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