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Abstract

In this paper, I present some existence theorems for quasi-variational

inequalities. Quasi-variational inequality is variational ineqality whose

constraint set depends upon unknown functions, that are solutions of

variational inequality. Parabolic quasi-variational inequality is repre-

sented by an evolution equation with subdifferentials.

1 Introduction

Differential equations are one of the most valu-

able theory to analyse various phenomena. In re-

cent, Nonlinear analysis is developing particularly,

and many brandnew informations are brought by

technics of analysis. Quasi-variational inequality is

also useful theory, and is studied by many mathe-

maticians.

Let X be a real reflexive Banach space and X∗

be its dual. We assume that X and X∗ are strictly

convex and denote by < ·, · > the duality pairing

between X∗ and X. Given a nonlinear operator A

from X into X∗, an element g∗ ∈ X∗ and a closed

convex subset K of X, the variational inequality is

formulated as a problem to find u in X such that

u ∈ K, < Au− g∗, u− w >≤ 0 ∀w ∈ K (1)

Variational inequality has been studied by many math-

ematicians, for instance see J. L. Lions and G. Stam-

pacchia [8], F. Browder [7], H. Brézis [5], and their

references.

The concept of quasi-variational inequality was

introduced by A. Bensoussan and J. L. Lions [1] in

order to solve some problems in the control theory.

Given an operator A : X → X∗, an element g∗ ∈ X∗

and a family {K(v); v ∈ X} of closed convex subsets
of X, the quasi-variational inequality is a problem to

find u in X such that

u ∈ K(u), < Au−g∗, u−w >≤ 0 ∀w ∈ K(u) (2)
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As is seen from (2), the constraintK(u) for the quasi-

variational inequality depends upon the unknown u,

which causes one of main difficulties in the mathe-

matical treatment of quasi-variational inequalities.

2 Existence for elliptic

quasi-variational inequalities

Let X be a real Banach space and X∗ be its dual

space, and assume that X and X∗ are strictly convex.

We denote by < ·, · > the duality pairing between

X∗ and X, and by | · |X and | · |X∗ the norms of X

and X∗, respectively. For various general concepts

on nonlinear multivalued operators from X into X∗,

for instance, monotonicity and maximal monotonic-

ity of operators, we refer to the monograph [2]. In

this section, we mean that operators are multival-

ued, in general. Given a general nonlinear operator

A from X into X∗, we use the notations D(A), R(A)

and G(A) to denote its domain, range and graph of

A. We formulate quasi-variational inequalities for

a class of nonlinear operators, which is called semi-

monotone, from X ×X into X∗.

2.1 Existence result

Definition 2.1. An operator Ã(·, ·) : X ×X → X∗

is called semimonotone, if D(Ã) = X × X and the

following conditions (SM1) and (SM2) are satisfied:

(SM1) For any fixed v ∈ X the mapping u →
Ã(v, u) is maximal monotone formD(Ã(v, ·)) =
X into X∗.
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(SM2) Let u be any element of X and {vn} be any
sequence in X such that vn → v weakly in

X. Then, for every u∗ ∈ Ã(v, u) there exists
a sequence {u∗n} in X such that u∗n ∈ Ã(vn, u)
and u∗n → u∗ in X∗ as n→ +∞.

Let Ã : D(Ã) := X ×X → X∗ be a semimono-

tone operator. Then we define A : D(A) = X → X∗

by putting Au := Ã(u, u) for all u ∈ X, which is
called the operator generated by Ã.

Now, for an operator A generated by semimono-

tone operator, any g∗ ∈ X∗ and a mapping v → K(v)
we consider a quasi-variational inequality (3), to find

u ∈ X and u∗ ∈ X∗ such that�
u ∈ K(u), u∗ ∈ Au,
< u∗ − g∗, w − u >≤ 0, ∀w ∈ K(u). (3)

Theorem 2.1. Let Ã : D(Ã) = X ×X → X∗ be a

bounded semimonotone operator and A be the opera-

tor generated by Ã. Let K0 be a bounded, closed and

convex set in X. Suppose that to each v ∈ K0 a non-

empty, bounded, closed and convex subset K(v) of K0

is assigned, and the mapping v → K(v) satisfies the

following continuity conditions (K1) and (K2) :

(K1) If vn ∈ K0, vn → v weakly in X (as n→ ∞),
then for each w ∈ K(v) there is a sequence

wn in X such that wn ∈ K(vn) and wn → w

(strongly) in X.

(K2) If vn → v weakly in X, wn ∈ K(vn) and wn →
w weakly in X, then w ∈ K(v).

Then, for any g∗ ∈ X∗, the quasi-variational inequal-

ity (3) has at least one solution u.

The following theorem is a slightly general version

of Theorem 2.1.

Theorem 2.2. Let Ã : D(Ã) = X × X → X∗

be a bounded semimonotone operator and A be the

operator generated by Ã. Suppose that to each v ∈
X a non-empty, bounded, closed and convex subset

K(v) of X is assigned and there is a bounded, closed

and convex subset G0 of X such that

K(v) ∩G0 �= ∅, ∀v ∈ X,
and

inf
w∗∈Aw

< w∗, w − v >
|w|X → ∞ as |w|X → ∞

uniformly in v ∈ G0.

Furthermore, the mapping v → K(v) satisfies the fol-

lowing condition (K’1) and the same condition (K2)

as in Theorem 2.1.:

(K’1) If vn → v weakly in X, then for each w ∈
K(v) there is a sequence wn in X such that

wn ∈ K(vn) and wn → w in X.

Then, for any g∗ ∈ X∗, the quasi-variational inequal-

ity (3) has at least one solution u.

In our proof of Theorems 2.1 and 2.2, we use some

results on nonlinear operators of monotone type. For

detailed proof, see [11], and we show applications for

elliptic quasi-variational inequalities in [14].

3 Existence for parabolic quasi-

variational inequalities

For positive numbers δ0, T , we are given sets

V (−δ0, t), 0 ≤ t ≤ T,

of functions from (−δ0, t) into a real Hilbert space H
and a family {ϕs(v; ·)}0≤s≤t of proper, lower semi-

continuous, convex functions ϕs(v; ·) with parame-
ters s ∈ [0, t] and v ∈ V (−δ0, t); here ϕs(v; ·) contin-
uously depends upon v ∈ V (−δ0, t) in a certain non-
local way. We consider a nonlinear evolution equa-

tion of the form:

u�(t) + ∂ϕt(u;u(t)) � f(t), 0 < t < T, in H, (4)

subject to the initial condition

u(t) = u0(t), − δ0 ≤ t ≤ 0, in H, (5)

where ∂ϕt(u; ·) is the subdifferential of convex func-
tion ϕt(u; ·) on H, u� = du

dt and u0 : [−δ0, 0] → H

and f : (0, T ) → H are prescribed as the initial and

forcing functions, respectively. This is a sort of func-

tional differential equations generated by subdiffer-

entials of ϕt(v; ·) with a nonlocal dependence upon
v. The objective of this section is to specify a class of

convex functions {ϕs(v; ·)}0≤s≤t as well as its non-

local dependence upon v ∈ V (−δ0, t) in order that
Cauchy problem {(4), (5)} admits at least one local
or global in time solution u.

In general, for a given real Banach space X we

denote by | · |X the norm in X. Throughtout this sec-
tion, let H be a real Hilbert space with inner product
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(·, ·)H and norm | · |H . Given a proper, lower semi-
continuous (l.s.c.) and convex function ψ(·) on H we

use the usual notation:

• D(ψ) := {z ∈ H;ψ(z) <∞}
(so called effective domain).

• ∂ψ is the subdifferential of ψ, which is a
(multivalued) mapping in H and defined by

z∗ ∈ ∂ψ(z)⇐⇒
(z∗, v − z)H ≤ ψ(v)− ψ(z), ∀v ∈ H

with domain

D(∂ψ) := {z ∈ H; ∂ψ(z) �= ∅}(⊂ D(ψ)).

There is an important concept of convergence for

convex functions, which was introduced by Mosco [6]

in order to characterize the convergence of solutions

to variational inequalities. Let {ψn} be a sequence
of proper l.s.c. and convex functions on H. Then

it is said that ψn converges to a proper, l.s.c. and

convex function ψ on H in the sense of Mosco, if the

following two conditions (M1) and (M2) are fulfilled:

(M1) lim inf
n→∞ ψn(z) ≥ ψ(z) for every z ∈ H.

(M2) For each z ∈ D(ψ) there is a sequence {zn} in
H such that zn → z in H and ψn(zn) → ψ(z)

as n→ ∞.
We refer various basic properties about convex func-

tions to monographs [3, 4, 10].

3.1 Local existence result

In order to formulate functions ϕt(v; ·) precisely
we introduce a time-independent, non-negative, proper,

l.s.c. and convex function ϕ0(·) on H such that the

set {z ∈ H; |z|H ≤ r, ϕ0(z) ≤ r} is compact in H
for each r ≥ 0.

Let δ0 be a fixed positive number and T > 0 be

a finite time. For each t ∈ [0, T ] we define a closed
convex subset V(−δ0, t) of W 1,2(−δ0, t;H) by

V(−δ0, t) := {v;V[−δ0,t](v) <∞} (6)

with

V[−δ0,t](v)

:= sup
−δ0≤s≤t

ϕ0(v(s)) + |v(0)|2H + |v�|2L2(−δ0,t;H)

(7)

where v�(t) = dv(t)
dt .

Now, to each v ∈ V(−δ0, t) a family {ϕs(v; ·)}0≤s≤t

of functions ϕs(v; ·) on H is assigned such that

(Φ1) ϕs(v; z) is proper, l.s.c., non-negative and con-

vex in z ∈ H, and it is determined by s ∈
[0, t] and v on [−δ0, s]; namely, for v1, v2 ∈
V(−δ0, t), we have ϕs(v1, ·) ≡ ϕs(v2, ·) on H
whenever v1 ≡ v2 on [−δ0, s];

(Φ2) ϕs(v; z) ≥ ϕ0(z), ∀v ∈ V(−δ0, t),
0 ≤ ∀s ≤ ∀t ≤ T ;

(Φ3) If 0 ≤ sn ≤ t ≤ T, vn ∈ V(−δ0, t),
supn∈N V[−δ0,t](vn) < ∞, sn → s and vn → v

in C([−δ0, t];H), then ϕsn(vn; ·) → ϕs(v; ·) on
H in the sense of Mosco.

We give the definition of solutions for evolution

equation (4).

Definition 3.1. Let u0 ∈ C([−δ0, 0];H) and f ∈
L2(0, T ;H). Then we say that u is a solution of the

following Cauchy problem CP (u0, f)

⎧⎨
⎩
u�(t) + ∂ϕt(u;u(t)) � f(t), 0 < t < T,
u = u0 on [−δ0, 0]

on [0, T ], if u satisfies that u ∈ C([−δ0, T ];H), u =
u0 on [−δ0, 0], u ∈ W 1,2(δ, T ;H) for every (small)

δ > 0, ϕ(·)(u;u(·)) ∈ L1(0, T ) and f(t) − u�(t) ∈
∂ϕt(u;u(t)) for a.e. t ∈ (0, T ).

We introduce the following function spaces: given

any function u0 in V(−δ0, 0), 0 < R < ∞ and t ∈
[0, T ], we put

V(u0;−δ0, t) := {v ∈ V(−δ0, t); v = u0 on [−δ0, 0]},

and

VR(u0;−δ0, t)(⊂ V(u0;−δ0, t)) :=
�
v

���� sup
0≤s≤t

�
ϕ0(v(s)) + |v�|2L2(0,s;H)

�
≤ R

�
.

Theorem 3.1. Let 0 < T < ∞ and u0 ∈ V(−δ0, 0)
with ϕ0(u0;u0(0)) < ∞. Assume that there are pos-

itive numbers T0 ≤ T and R > ϕ0(u0;u0(0)), a fam-

ily {Mr}0≤r<∞ of positive numbers Mr and a set

{{ϕt(v; ·)}; v ∈ VR(u0;−δ0, T0)} of families

{ϕt(v; ·)}0≤t≤T0 of convex functions satisfying the fol-

lowing condition (*):
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(*) There are two families

{avr ; v ∈ VR(u0;−δ0, T0), 0 ≤ r <∞}

of non-negative functions in L2(0, T0) and {bvr ; v ∈
VR(u0;−δ0, T0), 0 ≤ r < ∞} of non-negative func-

tions in L1(0, T0) such that

(H1) |avr |L2(0,T0) ≤ Mr and |bvr |L1(0,T0) ≤ Mr for

all r > 0 and all v ∈ VR(u0;−δ0, T0), and

{ϕt(v; ·)} ∈ G({avr}, {bvr}) for all

v ∈ VR(u0;−δ0, T0);

(H2) for each finite r > 0 and ε > 0 there is a

positive number δrε > 0 such that

� δrε

0

(avr(τ)
2 + bvr(τ))dτ < ε,

∀v ∈ VR(u0;−δ0, T0).

Then, for each f ∈ L2(0, T0;H), problem CP (u0, f)

has at least one solution u on an interval [0, T �] with

0 < T � ≤ T0 such that u ∈ V(−δ0, T �;H)

and sup0≤t≤T � ϕt(u;u(t)) <∞.
(Sketch of the proof.)

For fixed v ∈ VR(u0;−δ0, T0) we can get unique
solution u of⎧⎨

⎩
ut + ∂ϕ

t(v;u(t)) � f(t) a.e. t ∈ [0, T0],
u(0) = u0.

(8)

under our assumptions. With using fixed point the-

orem, we can see that there exists fixed point v = u.

This is a time local solution u of CP (u0, f).

If you need detailed proof, see [12]. It should

be noticed that the family of proper, l.s.c., convex

functions G({avr}, {bvr} is essential to solve (8). To
see the definition of this family, see [9].

3.2 Global existence result

Let ϕ0 be the same as in the previous section as

well as δ0 > 0 and T > 0. In this section, we consider

a closed convex subset Ṽ(−δ0, t) of L2(−δ0, t;H) for
each t ∈ [0, T ], as is defined below, in place of V(−δ0, t).

For each t ∈ [0, T ] we define

Ṽ(−δ0, t) := {v; Ṽ[−δ0,t](v) <∞}, (9)

where

Ṽ[−δ0,t](v) := |v|2L∞(−δ0,t;H)+

� t

−δ0

ϕ0(v(s))ds. (10)

Now, we suppose that to each v ∈ Ṽ(−δ0, t) a family
{ϕs(v; ·)}0≤s≤t of functions ϕ

s(v; ·) on H is assigned

such that

(Φ̃1) ϕs(v; z) is proper, l.s.c., non-negative and con-

vex in z ∈ H, and it is determined by s ∈
[0, t] and v on [−δ0, s]; namely, for v1, v2 ∈
Ṽ(−δ0, t), we have ϕs(v1, ·) ≡ ϕs(v2, ·) on H
whenever v1 = v2 a.e. on (−δ0, s);

(Φ̃2) ϕs(v; z) ≥ ϕ0(z), ∀v ∈ Ṽ(−δ0, t), 0 ≤ ∀s ≤
∀t ≤ T ;

(Φ̃3) If 0 ≤ sn ≤ t ≤ T, vn ∈ Ṽ(−δ0, t),
supn∈N Ṽ[−δ0,t](vn) < ∞, sn → s and vn → v

in L2(−δ0, t;H), then ϕsn(vn; ·) → ϕs(v; ·) on
H in the sense of Mosco.

Next, we define a function space ṼM (−δ0, t) for
each M > 0 and t ∈ [0, T ] by

ṼM (−δ0, t) := {v ∈ Ṽ(−δ0, t); Ṽ[−δ0,t](v) ≤M}.

In order to show the existence of a solution of

CP (u0, f) on the whole interval [0, T ] we relax as-

sumptions (H1) and (H2) as follows: For eachM > 0

there is a family {Mr}0≤r<∞ of positive numbers

Mr and a set {{ϕt(v; ·)}; v ∈ ṼM (−δ0, T )} of fami-
lies {ϕt(v; ·)}0≤t≤T of convex functions satisfying the

following condition (**):

(**) There are two families

{avr ; v ∈ ṼM (−δ0, T ), 0 ≤ r <∞}

of non-negative functions in L2(0, T ) and {bvr ; v ∈
ṼM (−δ0, T ), 0 ≤ r < ∞} of non-negative functions
in L1(0, T ) such that

(H̃1) |avr |L2(0,T ) ≤ Mr and |bvr |L1(0,T ) ≤ Mr for all

r > 0 and all v ∈ ṼM (−δ0, T ), and {ϕt(v; ·)} ∈
G({avr}, {bvr}) for all v ∈ ṼM (−δ0, T );

(H̃2) for each finite r > 0 and ε > 0 there is a

positive number δrε > 0 such that

� t+δrε

t

(avr(τ)
2 + bvr(τ))dτ < ε,

∀t ∈ [0, T − δrε], ∀v ∈ ṼM (−δ0, T ).

It should be noted that these conditions are indepen-

dent of initial data. Moreover we require the follow-

ing assumption (H̃3):
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(H̃3) there are a positive number R0 and a family

{hv} := {hv; v ∈ Ṽ(−δ0, T )} of functions in
W 1,2(0, T ;H) such that

|hv|W 1,2(0,T ;H) ≤ R0,

� T

0

ϕt(v;hv(t))dt ≤ R0, ∀v ∈ Ṽ(−δ0, T ).

We first show the existence of a solution CP (u0, f)

on the whole interval [0, T ] for good initial values u0.

Theorem 3.2. Suppose that (H̃1) and (H̃2) hold

for every M > 0 as well as (H̃3). Let u0 ∈ V(−δ0, 0)
with ϕ0(u0;u0(0)) < ∞ and f be any function in

L2(0, T ;H). Then CP (u0, f) has at least one solu-

tion u on [0, T ] such that

u ∈W 1,2(0, T ;H), sup
0≤t≤T

ϕt(u;u(t)) <∞.

Before ending this section, I show the existence of

a solution of CP (u0, f) for a little bit more general

class of initial data.

Theorem 3.3. Suppose that (Φ̃1), (Φ̃2) and (Φ̃3)

hold and that (H̃1) and (H̃2) hold for every M > 0

as well as (H̃3). Let u0 ∈ Ṽ(−δ0, 0) ∩C([−δ0, 0];H)
such that there is a sequence {u0n} in V(−δ, 0) with

ϕ0(u0n;u0n(0)) <∞ satisfying that

sup
n∈N

Ṽ[−δ0,0](un0) <∞, un0 → u0 in C([−δ0, 0];H).

Then CP (u0, f) has at least one solution u on [0, T ]

such that⎧
⎪⎨
⎪⎩

u ∈ C([0, T ];H), √
tu� ∈ L2(0, T ;H),

sup
0<t≤T

tϕt(u;u(t)) <∞.

Theorem 3.2 and 3.3 are proved in [12].

4 Applications

In this section, we consider a nonlinear system

SP(u0, θ0; f) of the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νΔu+ g(θ, u) + ∂IK(E)(u) � 0 in Q

E = E(θ, u) in Q

θt − κΔθ + h(θ, u) = f in Q

∂u

∂n
= 0, θ = 0 on Σ

u = u0, θ = θ0 in Q0

where Ω is a smooth bounded domain of RN , Γ =

∂Ω, Q := (0, T )×Ω, Σ := (0, T )×Γ, Q0 := [−1, 0]×
Ω, 0 < T < ∞, (·)t := ∂(·)

∂t , and
∂
∂n denotes the

outward normal derivative on Γ; κ and ν are positive

constants and f is a function given on Q; w0 and θ0

are prescribed on Ω × [−1, 0] as initial conditions;
g(·, ·) is a vector field from R × R2 into R2, u :=

(u(1), u(2)) ∈ R2, h(·, ·) is a function on R × R2,

K(E) is a non-empty compact convex subset of R2

for each E ∈ R and ∂IK(E) is the subdifferential of

the indicator function IK(E) of K(E) in R2; E is an
operator from a function space (⊂ L2(Q)× L2(Q)2)

into the space of smooth functions on Q.

For instance, in the biological context, consider

the coexistence or competition models of two species

of bacteria A and B. Now, let us pay attention to the

temperature field θ as the most important parame-

ter which controls the power of activation of bacte-

ria A and B. Let u := (u(1), u(2)) be the densities

(or the parameter indicating the activation) of bac-

teria A and B and that their dynamics are governed

by a reaction-diffusion equation. E is described by

E = E(θ, u) via a non-local smoothing operator E ,
for instance, defined by

[E(θ, u)](t, x)

:=

� t

−1

�

Ω

ρ(x− y, t− s, ; θ(s, y), u(s, y))dyds,

∀(t, x) ∈ Q,

where ρ(·, ·; ·, ·) is a smooth function on RN × R ×
R×R2 with ρ(x, s; θ, u) = 0 if s ≥ 1.

Now we put some assumptions for the system

SP(u0, θ0; f).

(A1) g(·, ·) = (g1(·, ·), g2(·, ·)) is a globally bounded,
Lipschitz continuous vector field from R×R2

into R2.

(A2) h(·, ·) is a globally bounded and Lipschitz con-
tinuous function from R×R2 into R.

In order to mention precisely the assumptions

on K(E) we need the space C1(R2,R2) of all C1-

transformations from R2 into itself, equipped with

the usual metric, and D1(R2) of all C1-diffeomorphi-

sms in R2, which is a subset of C1(R2,R2).
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(A3) K(·) is a set-valued mapping from R into 2R
2

such that K(E) is a non-empty, compact and

convex subset of R2 for each E ∈ R. Suppose

that

(a1)
�

E∈RK(E) is bounded in R2,

and
�

E∈RK(E) �= ∅.
(a2) for each E ∈ R there is XE(·) ∈ D1(R2)

such that XE(K(0)) = K(E),

(a3) the mappings E → XE(·) and
E → d

dEXE(·) are continuous fromR into

C1(R2,R2).

(A4) E is an operator from DE which is defined by

�
t∈[0,T ]

L∞(−1, t;L2(Ω))× L∞(−1, t;L2(Ω)2)

into C1(Ω), and enjoy the following conditions

(b1), (b2) and (b3):

(b1) For each θ ∈ L∞(−1, t;L2(Ω)) and w ∈
L∞(−1, t;L2(Ω)2) with t ∈ [0, T ] we put

E(s, x) := E(θ|[−1,s], u|[−1,s])(x),

∀(s, x) ∈ [0, t]× Ω

where θ|[−1,s] and w|[−1,s] are respectively

the restrictions of θ and u on [−1, s]× Ω.
Suppose that s → E(s, ·) is a Lipschitz
continuous function from [0, t] into C1(Ω)

with d
dsE ∈ L∞(0, t;C1(Ω)); hence

E(s1, ·)− E(s2, ·)

=

� s1

s2

d

dτ
E(τ, ·)dτ in C1(Ω),

∀s1, s2 ∈ [0, t].

(b2) Suppose that E is continuous in the fol-
lowing sense: if {θn} and {wn} are bounded
in L∞(−1, t;L2(Ω)) and L∞(−1, t;L2(Ω)2)

for each t ∈ [0, T ], respectively, and if

θn → θ in L2(−1, t;L2(Ω)) and un → u

in L2(−1, t;L2(Ω)2), then

En(s, x) := E(θn|[−1,s], un|[−1,s])(x)

→ E(s, x) := E(θ|[−1,s], u|[−1,s])(x)

in C([0, t];C1(Ω))

(b3) If θ and w vary in bounded subsets of

L∞(−1, t;L2(Ω)) and

L∞(−1, t;L2(Ω)2) for each t ∈ [0, T ], re-
spectively, then

E(s, x) := E(θ|[−1,s], u|[−1,s])(x) and its

derivative d
dtE vary in bounded subsets of

C([0, t];C1(Ω)) and L∞(0, t;C1(Ω)), re-

spectively.

For some typical examples of K(E) and E(θ, u),
see [15] and [17].

Definition 4.1 Let f ∈ L2(0, T ;L2(Ω)), θ0 ∈
C([−1, 0];L2(Ω)) and u0 := (u

(1)
0 , u

(2)
0 ) belongs to

C([−1, 0];L2(Ω)2). Then a set of functions {θ, u :=
(u(1), u(2))} is called a solution of SP(u0, θ0; f) on
[0, T ], if the following conditions (s1)-(s4) are ful-

filled:

(s1) θ ∈ C([−1, T ];L2(Ω))

∩W 1,2
loc ((0, T ];L

2(Ω)) ∩ L2(0, T ;H1(Ω))

∩L2
loc((−1, 0];H2(Ω)), θ = θ0 on [−1, 0],

u ∈ C([−1, T ];L2(Ω)2)

∩W 1,2
loc ((0, T ];L

2(Ω)2) ∩ L2(0, T ;H1(Ω)2)

and u = u0 on [−1, 0].

(s2) For a.e. t ∈ (0, T ), the following equation holds:
θ�(t)− κΔDθ(t) + h(θ(t), u(t)) = f(t) in H,

where ΔD stands for the Laplacian with homo-

geneous Dirichlet boundary condition.

(s3) u(t, x) ∈ K(E(t, x)) for a.e. (t, x) ∈ Q, where
E(t, x) := E(θ|[−1,t], u|[−1,t])(x) for (t, x) ∈ Q.

(s4) For a.e. t ∈ (0, T ), the following quasi-
variational inequality holds:�

Ω

(u�(t, x) + g(θ(t, x), u(t, x))) · (u(t, x)− z(x))dx

+ν

�

Ω

∇u(t, x) · ∇(u(t, x)− z(x))dx ≤ 0,

∀z ∈ H1(Ω)2 with z(x) ∈ K(E(t, x)) for a.e. x ∈ Ω,
Theorem 4.1 Suppose that assumptions (A1)-

(A4) are fulfilled. Let f ∈ L2(0, T ;L2(Ω)) and θ0 ∈
C([−1, 0];L2(Ω)) as well as u0 := (u

(1)
0 , u

(2)
0 ) be-

longs to C([−1, 0];L2(Ω)2). Suppose that there are

sequences {θ0n} in C([−1, 0];H1
0 (Ω)) and {u0n :=

(u
(1)
0n , u

(2)
0n )} in C([−1, 0];H1(Ω)2) such that
⎧⎨
⎩
θ0n → θ0 in C([−1, 0];L2(Ω)),

u0n → u0 in C([−1, 0];L2(Ω)2),
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u0n(0, x) ∈ K(En(x)) for a.e. x ∈ Ω, ∀n = 1, 2, · · · ,
where En(x) := E(θ0n, u0n)(x) for all x ∈ Ω. Then,

SP(u0, θ0; f) admits at least one solution {θ, u :=
(u(1), u(2))} on [0, T ] in the sense of Definition 4.1

such that

√
tθ� ∈ L2(0, T ;L2(Ω)), t|∇θ|2L2(Ω) ∈ L∞(0, T ),

and

√
tu� ∈ L2(0, T ;L2(Ω)2), t|∇u|2L2(Ω)2 ∈ L∞(0, T ),

where |∇u|2L2(Ω)2 := |∇u(1)|2L2(Ω) + |∇u(2)|2L2(Ω).

For the detailed proof of this theorem, see [15].

We have to introduce a regularized problem for

SP(u0, θ0; f) to analyse SP(u0, θ0; f). For every pos-

itive constant ε, we define a problem SPε(u0, θ0; f)

as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − νΔu+ g(θ, u) + ∂IεK(E)(u) = 0 in Q

E = E(θ, u) in Q

θt − κΔθ + h(θ, u) = f in Q

∂u

∂n
= 0, θ = 0 on Σ

u = u0, θ = θ0 in Q0

where IεK(E) is the Moreau-Yosida regularization of

IK(E), namely

IεK(E)(u) = inf
w∈K(E)

�
1

2ε
|w − u|2

�
∀u ∈ R2,

and ∂IεK(E) is the Yosida approximation of the sub-

differential ∂IK(E) of IK(E), namely

∂IεK(E) =
I − PK(E)

ε
,

where PK(E) is the projection from R2 onto K(E).

As was proved in section 6 of [15], SPε(u0, θ0; f)

has a unique solution {θε, uε = (u
(1)
ε , u

(2)
ε )} under

(A1)-(A4) with the following additional assumptions

(A5) and (A6).

(A5) |PK(E1)(v)− PK(E2)(v)| ≤ CP |E1 − E2|,
∀E1, E2 ∈ R, ∀v ∈ B0, where B0 is a closed

ball around the origin inR2 with ∪E∈RK(E) ⊂
B0 and CP is a positive constant.

(A6) The environment index E(x, t) := E(θ|[−1,t])(x)

depends only on temperature θ and is given by

an integral operator of the form

E(θ|[−1,t])(x)

:=

� t

−1

�

Ω

ρ(x− y, t− s; θ(s, y))dyds,
∀(t, x) ∈ Q,

where ρ(·, ·; ·) is smooth on RN × R × R and

ρ(y, s; r) = 0 if s ≥ 1.
The next theorem ensures that all the solutions of

SP(u0, θ0; f) are approximated by regular problems

SPε(u0, θ0; fε) of the above type, although problem

SP(u0, θ0; f) has multiple solutions in general.

In the rest of this paper, in order to avoid some

irrelevant arguments we assume that the initial data

{θ0, u0} satisfy θ0 ∈ C([−1, 0];H1
0 (Ω)),

u0 ∈ C([−1, 0];H1(Ω)2) and u0 ∈ K(E0) a.e. in Ω

with

E0(x) :=

� 0

−1

�

Ω

ρ(x− y,−s, θ0(s, y))dyds, x ∈ Ω.

Theorem 4.2 Let {θ, u} be any solution of problem

SP(u0, θ0; f), and let {εn} be any sequence of positive

numbers with εn → 0 (as n→ ∞). Then there exists

a sequence {θn, un} of solutions of SPεn(u0, θ0; fn)

such that θn → θ in C([0, T ];L2(Ω)), weakly∗ in

L∞(0, T ;H1
0 (Ω)) and weakly in W 1,2(0, T ;L2(Ω)) as

well as un → u in C([0, T ];L2(Ω)2), and weakly∗ in

L∞(0, T ;H1
0 (Ω)

2) and weakly in W 1,2(0, T ;L2(Ω)2),

and fn − f → 0 in L∞(0, T ;L2(Ω)).

For the detailed proof of Theorem 4.1 and 4.2,

see [15].

We proved existence theorems of optimal control

problem for SP(u0, θ0; f) and its approximated prob-

lems in [16]. Moreover, we show existence of solu-

tions for several time-discrete problem of SP(u0, θ0; f).

Results in [16] give us numerical scheme to get one of

the solutions of SP(u0, θ0; f) numerically. Analysing

time-discrete problem is very important from numer-

ical point of view.

If you need to see other examples, you can see

concrete application of quasi-variational inequality

in [13, 17].
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lation de problémes de controle impulsionnel et

Existence theorems for abstract quasi-variational inequaties 名城大学理工学部研究報告 No.52 2012

13



applications, C. R. Acad. Sci. Paris Sér. A, 276

(1973), 1189–1192.

[2] C.Baiocchi and A.Capelo: Variational and

Quasivariational Inequalities, John Wiley and

Sons, Chichester-New York-Brisbane-Toronto-

Singapore, 1984.

[3] A. Attouch: Variational Convergence for Func-

tions and Operators, Pitman Advanced Publish-

ing Program, Pitman, Boston, 1984.
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